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Abstract 

In their classic book, Cartan and Eilenberg described a more-or-less general scheme for defin- 
ing homology and cohomology theories for a number of different kinds of algebraic structure, 
using a general theory of augmented algebras. Later, in his doctoral dissertation, Beck showed 
how to use the theory of triples to derive a very different and completely general scheme for 
doing the same thing. Originally, it was unclear how the two theories were related, but many 
of these questions were eventually answered in a paper by Barr and Beck. The present paper 
answers the remaining such questions, most notably in the case of Lie algebras by finding a 
general result that takes care of all the cases at once. It also shows that it is possible to extend 
the Cartan-Eilenberg theory of Lie algebras from algebras that are free over the ground ring to 
ones that are only projective. 

1. Introduction 

The genesis of this paper is in [l] in which it is shown that, with a shift in dimension, 

the cohomology theories for groups and associative algebras of [4] were the same as 

those that were introduced by Beck in his doctoral dissertation [3] and could thus be 

viewed as the derived functors of the derivations functor on the categories in question 

and computed by “cotriple resolutions” in those categories. This was the first use of 

acyclic models as a tool in algebraic cohomology theories. In that paper, we never 

examined the case of Lie algebras and, oddly enough, this gap has not been filled in 
the intervening time. 

In this paper, we show that the results of [I] hold in some generality, sufficient to 

include the case of Lie algebras and many others in the Cartan-Eilenberg (CE) context. 

As a minor bonus, we show that the hypothesis of Chapter XIII of [4] on Lie algebras, 
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that the algebra be free over the ground ring, can be relaxed to the assumption that 

the algebra is projective. 

1.1. The dimension shift. There is one unvarying feature of these comparisons. The 

CE theory begins one dimension lower than that of Beck. Let us write H,” and Hi 

for the homology and cohomology theories of Beck and write HzE and H& for those 

of [4]. Then the comparison theorems are between H,” and H:z’ and there is nothing 

in the Beck theory corresponding to H&. 

1.2. Notation for identity maps. Sometimes we denote the identity map of some object 

by id and sometimes by 1, depending on which is more convenient. The latter is used 

mostly for matrix entries and in computations. 

2. Beck’s theory 

2.1. Modules. In his 1967 dissertation, Beck answered the question, “What is a mod- 

ule?” His answer was appropriate for the kind of module that was a coefficient module 

for cohomology. For groups, commutative algebras and Lie algebras, these are left 

modules; for associative algebras, the appropriate notion is that of two-sided module. 

Beck’s definition captures exactly those notions in the various categories. This means 

that it encompasses all known notions of module, except, oddly enough, that of left 

module over an associative ring. 

The basic idea is to identify a module with the split extension that has module 

as kernel. For example, if K is a commutative ring, A is an associative K-algebra 

and A4 is a two sided A-module (which includes the assumption that left and right 

multiplication on M by an element of K are the same), then the split extension is the 

K-algebra B that is, as a K-module, just A x M and whose multiplication is given by 

(a,m)(a',m') = (aa',am' + ma'). It turns out that the B that arise in this way can be 

characterized as the abelian group objects in the slice category d/A, where .d is the 

category of associative K-algebras. 

Accordingly, we will define for an object A of a category .4c the category Mod (A) 

as the category of abelian group objects of the slice d/A. 

Here we show that works for associative K-algebras. Let A, A4 and B be as above. 

Then an abelian group object of a category is determined by certain arrows, namely, 

a zero map 1 ---f B, an inverse map B --f B and a group multiplication B x B --) B. In 

the slice category, the terminal object is A and that product is the fibered product 

B XA B. The zero map takes the element a to (a, 0), the inverse map is given by 

(a, m) H (a, -m) and the multiplication takes the pair ((a, nz), (a, m')) in the fiber over 

a to the element (a, m + m’). This makes B into an abelian group in d/A. The inverse 

functor takes B--PA to the kernel of that arrow, which turns out to be an A-module in 

the usual sense. The details are found in [3] but we give a sketch of the argument in 

an appendix to this paper. 
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2.2. Regular epimorphisms and regular categories. This section records some facts 

about regular epimorphisms and regular categories. Details and proofs can be found in 

[2, Chapter 11. 

An arrow in a category is called a regular epimorphism (often abbreviated “regular 

epi” if it is a coequalizer of two arrows into its domain. If the arrow has a kernel pair 

(the pullback of the arrow with itself), then it is a regular epi if and only if it is the 

coequalizer of that kernel pair. A category is a regular category if in any pullback 

diagram 

AA-B 

I I 
Cf_D 

whenever f is a regular epi, so is g. Among the many properties of regular epis is 

that they are strict. which means they factor through no proper subobject of their 

codomain. 

Proposition 2.3. Let .d is a regular category. Then the forgetjid functor I.4 : Mod 

(A) --f d/A preserves regular epis. 

Proof. What we have to show is that if f : M’ -+M is a regular epimorphism in the 

category Mod(A), then it is also a regular epi in d/A. Actually, we will show that if ,f 

is a strict epi in Mod (A), then it is regular in .d and hence in 

d/A. 
An object of Mod(A) is an object B ---f A equipped with certain arrows of which 

the most important is the arrow m : B xA B --) B that defines the addition. There are 

also some equations to be satisfied. The argument we give actually works in the gen- 

erality of the models of a finitary equational theory. So suppose f : M’ *M is a 

strict epimorphism in Mod (A). If the map IA f is not a strict epi, it can be factored 

as B’ = IAM’ --H B” ++ B = IAM in d/A. Since &, and hence d/A, is regular, 

the arrow B’ XA B/---f B” xA B” is also regular epic and we have the commutative 

diagram 

B’x.~B’--+~ B” xA B”-B x,B 

m’ I I m 

B’ - B” P B 

The “diagonal fill-in” (here vertical) provides the required arrow m” : B” x.4 B” + B” at 

the same time showing that both of the arrows B’ + B” + B preserve the new operation. 

A similar argument works for any other finitary operation. As for the equations that 

have to be satisfied, this follows from the usual argument that shows that subcategories 

defined by equations are closed under the formation of subobjects. For example, we 
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show that m” is associative. This requires showing that two arrows B” xAB” xA B” --* B” 

are the same. But we have the diagram 

B” xA B” xA B” -B x,B x,,B 

II I 
B” > *B 

that commutes with either of the two left hand arrows. With the bottom arrow manic. 

this means those two arrows are equal. 0 

In all cases, the category of modules is a category of modules over some com- 

mutative ring we call, following [4], AC (for enveloping algebra of A). This follows 

immediately from the Morita theorems, which define Ae only up to Morita equivalence. 

The (co)homology theories are actually invariant to Morita equivalence, but there does 

in fact always seem to be a natural choice for A’. 

2.4. Derivations. At the same time, Beck answered the question of what is a derivation. 

If an A-module is an abelian group object in d/A, then for any A-module M and any 

B +A, the horn set al/A(B,&M) is an abelian group. In all the traditional cases - 

groups, Lie, associative and commutative algebras-the abelian group is the group of 

derivations of B to M, where the action of B on M is induced from that of A by the 

arrow B+A. 

In the cases of interest to us, the inclusion I.4 has a left adjoint. In fact, it is not 

hard to show that this adjoint necessarily exists when .d is locally presentable in the 

sense of [SJ. Suppose we temporarily call this adjoint JA. Then for any B -A and any 

A-module M, we have 

Mod(A)(JAB,M) ” a’/A(B,[~hl) 2 Der(B,M) 

so that J” represents the functor Der. For this reason, we call J4(B) the A-module of 

differentials on B and denote it henceforth by Diffg(B). 

2.5. Cotriple homology and cohomology. Beck went on from the definition of mod- 

ule, derivations and differentials to define homology and cohomology theories that we 

describe briefly here. In all these cases, there is a cotriple G = (G,E,~) on .cul that 

comes from the composite of an underlying and a free functor. In the case of groups, 

the underlying functor is to the category of sets and in all other cases, we are dealing 

with a category of K-algebras for a commutative ring K and the underlying functor is 

to K-modules. Beck created the simplicial resolution 

. . . ? Gm+‘,,j f . . .z @A = GA 
i i 

in the category &/A. He then defined homology as the homology of the simplicial 

object got by applying the functor DiffA( -) 8 M to the resolution above. The tensor 
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product is that of the category of A-modules (or Ae-modules). The cohomology comes 

in a similar way by applying the contravariant functor Der( -, M), for an A-module IM 

to get a cosimplicial object 

O-Der(GA,M)zDer(G’A,M) 2 . f Der(G”+‘A,M) 7.. 
i f 

and taking the cohomology. 

3. The Cartan-Eilenherg setting 

In [4], Cartan and Eilenberg give a more or less uniform definition of cohomology 

theories in various algebraic categories that can be described as follows. In each of 

the various categories, they associate to each object the enveloping associative algebra 

Ae, as previously described together with a left Ae-module we call Z(A). Then for 

any A-module M, the homology and cohomology are defined as Tori’(M,Z(A)) and 

Ext,:,(Z(A),M), respectively. One point to note here is that the Tor is defined on right 

Ae-modules and the cohomology on left Ae-modules. However, Ae is always isomorphic 

to its opposite ring and the three notions of A-module (in the sense of Beck), left AC- 

module and right Ae-module coincide. For example, in the case of associative rings, an 

A-module in the sense of Beck is a two-sided A in the usual sense and if M is such 

a module, it is a left AC = A 6 Aor-module according to (a 8 b)m = amb and a right 

Ae-module by defining m(a @ b) = bma. 

Actually, this description of the Cartan-Eilenberg definitions is somewhat misleading. 

They actually construct a “standard projective resolution” C.(A) of Z(A) that can be 

used to compute the Tor and Ext above. This standard resolution allows us to compare 

the Cartan-Eilenberg theory with the cotriple theory. 

There are two apparently ad hoc elements in this definition. The first is the definition 

of module (and therefore of the enveloping algebra) and the second is the definition 

of Z(A). Cartan and Eilenberg simply give them, with no attempt to find a systematic 

basis for describing them. Beck solved the first problem and, indirectly, the second. 

We have already described how Beck solved the problem of how to systematically 

describe a category of modules. 

As for the second, the key is actually in the standard complex. Let us denote it by 

. ..--.,(A)-. ..-c,(A)~Co(A)-+Z(A)-+O. 

The module Z(A) is rather arbitrary, but in every case, the kernel of Co(A) -Z(A) is 

the module DiffA(A). This means that there is an exact sequence 

. ..+C.(A)--t...--t C2(A)+CI(A)+DiffA(A)+0 

which is a projective resolution of Di@(A). Moreover, Dif14(A) can be described in 

an intrinsic way, as we have already pointed out. 
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Define the shifted Curtan-Eilenherg (co)homology as HzES(A,M) = Tor,(M, 

Dif?(A)) and H&,(A,M) = Ext’(Dif?(A),M). The connection between the shifted 

and original theories is stated in the following proposition, whose proof is 

trivial. 

Proposition 3.1. For an)’ object A oJ’ one of the Curtaw-Eilenberg categories und 

anv A-module M, HzES(A,M) Z H,C,“,(A,M), jbr n > 0, HzES(A, M) ” M 61~~ 

D&“(A) and HFE(A, M) is cl subgroup oj‘ M @A~ D@(A). Similarly, H&(A,M) 2 

H;1l’(A,M), ji)r n > 0, HcoEs( A,M) g Der(A,M) und H&(A,M) is a quotient group 

of Der(A, M). 

What we will be showing is that, in the appropriate setting, the cotriple (co)homology 

groups are equivalent to the shifted Cartan-Eilenberg groups. 

3.2. The standard setting. In order to understand these things in some detail. we 

describe what we call a standard Cartan-Eilenberg or CE setting. 

We begin with a regular category ,d. For each object A of .rJ, we denote by Mod (A) 

the category Ab(d/A) of abelian group objects of &/A. We assume that the inclu- 

sion l4 : Mod(A) --f&/A has a left adjoint we denote DiffA. When f : B -+A is 

an arrow of .NI, the direct image (or composite with f) determines a functor j’! : 

d/B -+ s!_YA that has a right adjoint f * = B x.~ - of pulling back along B +A. The 

right adjoint (but not the direct image) induces a functor, we will also denote by 

f * : Mod (A) -+ Mod (B) that we will assume has a left adjoint we will denote j’#. 

The diagram is 

The upper and left arrows are left adjoint, respectively, to the lower and right arrows 

and the diagram of the right adjoints commutes, and therefore, does the diagram of 

left adjoints. The left adjoint f# turns out to be the functor Ae fly’ (-). That is, AC 

becomes a right P-module via ,f (actually, just the right hand version of j’* ) and then 

that tensor product is an A”-module. 

We assume, given a base category 1’ and an underlying fimctor U : .d + 2” that 

preserves regular epis and has a left adjoint F. Let G = (G,e,6) denote the resultant 

cotriple on .QI’. 

We suppose, there is given for each object A of XI!, a chain complex functor CJ : 

.&/A -+ CbCompMod (A), the category of chain complexes in Mod(A). That is, it 
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assigns to each B --) A a chain complex 

of A-modules. We further suppose that for ,f‘ : B--t A the diagram 

&/A ” b ChCompMod (A) 

ChCompf, 

) I 
ChCompMod (B) 

commutes. 

Note that all these categories have initial objects. If we take B to be the initial object, 

then we get a standard complex for that case and the complex in all the other cases 

is got by applying i#, where i is the initial morphism. In light of a previous remark, 

this is just tensoring with Ae. 

4. The main theorem 

For the purposes of this theorem, define an object A of .d to be U-projective if UA 

is projective in 9” with respect to the class of regular epis. 

Theorem 4.1. Suppose that, in the context of a CE settint], when A is U-prqjectire, 

(i) GA is U-projective; 

(ii) C!(A) is u projectioe resolution of DiffA(A); 

(iii) For each n 2 0, there is a functor ct : B’IUA -Mod(A) suck that the 

diagram 

.?//A c,1 Mod (A) 

commutes. Then the complexes C!(A) und DiffA(G’+‘A) are chain equivalent. 

The last condition means that the modules in the projective resolution depend only 

on the object underlying A. Only the face operators depend on the actual structure. In 

the proof below, we fix A and write C,, and Diff for C,” and DiffA, respectively. 

Proof. We prove this by applying a general theorem on double complexes that we 

defer to the end of the paper (Corollary 6.7). To apply this theorem, we must 
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show that in the double complex 

. ..----cC.,G 
m I 

A ___t...- C,,Gm ’ ‘A - DiffG”’ ‘A - 0 

...- C,,GA-...- C,GA-DiffGA -0 

I I I 
“.- C A _*..___c C,A - DiffA------_,O 

,I 

I I I 
0 0 0 

all rows except the bottom and all columns except the right hand one are contractible. 

The column 

. + C,,G”+‘A 4. . . + C,,GA --) C,,A -+ 0 

is equivalent to 

. -+ en Up+l~ i . . +?,,UGA+i;,UA4 

At this point we require, 

Lemma 4.2. Let the functor U : .d --f 2” have leji adjoint F and let G he the resultant 

cotriple on d. Then jix any object A of d, the siw~plicial object 

. . . 7 UG”+‘A 7.. .z UG’A = UGA + u/j 
i + 

is contractible. 

Proof. We let s = qUG”A : UG”A -+ UGmf’A. Then 

Ud’ o s = UEG~A o aUG”A = id 

while, for 0 < i 5 m, 

Ud’ o $JG”A = UG’&G”-‘A o $JG”A 

and the last term equals, by naturality of I?, 

@G 
m-IA o UG’-t&G”-‘A = ,,UGm-‘A o (/d’-’ 

This shows that s is a contracting homotopy in the simplicial object. q 
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If we apply the additive functor cn to this contractible complex, we still get a 

contractible complex, which shows that the columns of the double complex, except for 

the rightmost, are contractible. For the rows, we require the following. 

Lemma 4.3. Let P be u regular projectirle object of !2’. Then, for my P - UA, 

Diff(FP) is projective. 

Proof. When P is projective in $‘, any P +X is a projective object of Y’/X. It is 

immediate that when L : S + 3 is left adjoint to R : ‘9 t :‘T, then L takes a projective 

in .“x’ to a projective in Y provided R preserves the epimorphic class that defines the 

projectives. In this case, the right adjoint is the composite U& and the class is that 

of regular epimorphisms. We have assumed that U, and hence U/d, preserves regular 

epis and Proposition 2.3 says that IA does. 

With this lemma we see that the rows of the double complex, save for the bottom 

row, are projective resolutions of projectives modules and are, therefore, also con- 

tractible. This establishes the theorem. 0 

5. Applications 

5.1. Groups. Let Gp be the category of groups and 71 be a group. The underlying 

functor U : Gp + Set evidently satisfies our conditions and the fact that epimorphisms 

in Set split implies that every group is U-projective. If we fix a group n, the functor 

cz : Set/h + Mod(n) takes the set g : S + Un to the free z-module generated by the 

(n + 1 )th Cartesian power Sn+’ . Now suppose that g = r/f for a group homomorphism 

f : Zi’ + n. The value of the boundary operator 8 on a generator (xo,xl, . . ,x,) E 
fZ~(Uf:Ul7-tUn) is 

n-1 

.f’(.~*)(Xl,...,Xn) + c (-1)‘(xo,. . . ,Xi_lXi, . . . , &) +(-w(xo~....xn-l) 
i=l 

which depends on the group structure in n. This defines the functor Cz on Gp/n. 

The standard Cartan-Eilenberg resolution is the special case of this one in which J‘ is 

the identity 7t -+ 71. We may denote C,“(id : Lh -+ Lhc) as simply C.(n) (U applied to 

the identity of rc is the identity of Uz). It is shown in [4] that C.(n) is a projective 

resolution of Diff “( 7-c). More precisely, it is shown that the complex extended by one 

term is a projective resolution of Z(n) which in this case is the group of integers with 

trivial action by 7~. Thus the conditions of (4.1) are satisfied and we conclude that the 

group cohomology is the cotriple cohomology. 

Although c’,“(S 4 Un) could, in principle, depend on the arrow S - l.Jn, in practice, 

in this example and the others it does not. The boundary operator does, however. 

5.2. Associative algebras. The situation with associative algebras is quite similar. 

We begin with a commutative (unitary) ring K. The category 9’ is the category of 
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K-modules and ,c3 is the category of K-algebras. If A is a K-algebra, the category 

Mod(A) is the category of two sided A-modules. The enveloping algebra of A is 

Ae = A 13~ A”P and it is easy to see that two-sided A-modules are the same thing as 

left AC-modules. The free algebra generated by a K-module M is the tensor algebra 

and it is evident that F(M) is K-projective when A4 is. Note that we use M(“) to 

denote the nth tensor power of M. If A is a K-algebra, the functor ci is defined by 

the formula 

~;;l(M~UA)=A~M’“+“~A”P”Ae~M(“+‘) 

for 9 : A4 --t UA. The boundary formula is similar to the one for groups. If q has the 
form r/f : UB + UA, then 

;i(a 0 b(J $3 . . ~3 6, 0 a’) = af(bo) $3 6, s &i 6, 8 a’ 

n-l 

+(-l)“uC3:~@...O6,_, @f(&)u’ 

differing only in the fact that we have operation on the right as well as on the left. 

The remaining details are essentially similar to those of the group case. 

5.3. Lie algebras. This example differs from the preceding ones more than just in 

some details. For one thing, we would like to state a theorem for Lie algebras that are 

projective over the ground ring, not just free as done in [4]. For another, it is not clear 

that the free Lie algebra generated by a K-projective K-module is still K-projective. 

This fact is buried in an exercise in [4, Exercise 8 on p. 2861, but is certainly not 

well-known, so we include the argument. 

We begin by seeing what needs to be done to go from free modules to projec- 

tives. [4] makes use of this in two places. The first is in the Poincare-Witt theorem, 

which states that the enveloping associative algebra generated by a K-free Lie algebra is 

K-free. The enveloping algebra in this comes from the adjoint, g H ge, to the “forgetful” 

fimctor from associative algebras to Lie algebras that replaces the multiplication in an 

associative algebra by the Lie bracket [x, ~1 = xy - _vx. But if g is K-projective, then 

we can find a K-module go such that the K-module g 3 go is K-free. We can make 

g @ go into a Lie algebra by making go a central ideal (that is the product of any 

element of go with any other element of the direct sum is 0). Then g is, as a Lie 

algebra, a retract of g & go. All functors preserve retracts so that ge is a retract of 

(g 6 go)” and if the latter is K-free, then ge is K-projective. 

The second place that freeness is used in the theorem that if h is a Lie subalgebra 

of the Lie algebra g, and if g, h and g/h are K-free, then g” is a free he-module. We 

would like to prove this with “free” replaced everywhere by “projective”. 
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Proposition 5.4. Let 0 --+ b + g + g/b + 0 be an exact sequence of K-projtctive 
K-Lie algebras. Then ge is projective as an be-module. 

Proof. The conclusion is valid when all three of g, h and g/h are K-free [4, Proposition 

X111.4.11. For the general case, let f = g/h. Since h is K-projective, there is a K-module 

ho such that h 8 ho is K-free. If we give h, the structure of a central ideal, then h ;E ho 

is a K-free K-Lie algebra. Similarly, choose fa so that f % f. is K-free. We have a 

commutative diagram 

0-t) 
f -g g =i-0 

In the bottom sequence, the two ends are K-free from which it follows that the middle 

is as well. Apply the enveloping 

diagram, in which go = ho @ f. 

algebra functor to the left hand square to get the 

I I 
(b Q b,)‘- (n Q Ro)’ 

According to [4, Proposition X111.2.1], for any two Lie algebras g, and g2, there is an 

isomorphism (g, @ g2)e g gf (9 95. This can be proved directly, as done previously, or 

by noting that both sides represent the functor that assigns to an associative algebra A 
the set of pairs of pointwise commuting homomorphisms in Hom(g;,A) x Hom(g;. A). 
Moreover, l$ is K-projective since h, is. If l$ is K-free, say hi ” c K, then h” 0 l$ g 

h” i;;; C K 2 C b” is a free he-module. If l$, is K-projective, then it is a retract of a free 

K-module and it follows that h” 13 l$, is a retract of a free he-module. But (g EI g,,)’ 

is, as an (h ~a h,)e-module, u fortiori as an he-module, isomorphic to a direct sum of 

copies of (h @ he)e and hence is also he-projective. Finally. ge is a retract as a ring, 

therefore as a #-module and hence as an he-module, of (g % go)’ and is therefore also 

he-projective. 0 

With these two results, the entire Chapter XIII of [4] becomes valid with free re- 

placed by projective. 

Now we describe the standard theory from [4] (with the usual dimension shift). For 

a K-module M, let l\“(M) denote the nth exterior power of M. Then for a module 

homomorphism g : M + l/g, ci(A4 + Ug) = g’ C3 r\“+‘(M). If g = Uf for a Lie 
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algebra homomorphism f’ : b + g, the boundary is described on generators as follows, 

where, as usual, the fi denotes the omission of an argument. 

+ c (-l)‘+‘[x;,xj]Ax~/\.‘.~ zC,A...A 2,,A../!Xx,. 
I<l<j<n 

In order to apply Theorem (4.1) we must show the following: 

Proposition 5.5. Let M he a projective K-module. Then the jhee Lie algebra FM is 

also K-projective. 

Proof (Based on the hint to Exercise 8 of [4, p. 2861). We consider first the case of 

a free K-module. There is a diagram of categories and adjoints 

Kc+ 
Lie(K) * ,Lie (Z) 

II ~ K@- II 
Mod (K) ) Mod (Z) 

\\I 
Set 

It is clear from this diagram that if we show that the free Z-Lie algebra generated 

by a free Z-module (that is, abelian group) is a free abelian group, then by applying 

the functor K C$Z -, it follows that the free K-Lie algebra by a free K-module will be 

K-free. 

So let A4 be a free abelian group and let F(M) be the free Lie algebra generated 

by M. By the commutation of adjoints in the diagram 

Alg (Z) * ) Lie(Z) 

Mod(Z) 

it follows that the enveloping associative algebra F(M)e is simply the tensor algebra 

z Cl3 M 3 (MOM) 63 A4t3’ 69 ... which is Z-free. The inner adjunction is a map 

F(M) + U(F(M)e), where U is the forgetfil functor from associative algebras to Lie 

algebras. If this map can be shown to be manic, then F(M) is a subgroup of a free 

abelian group and is therefore free. All these functors commute with filtered colimits; 
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therefore, if we can show that the adjunction map is manic when M is free on a finite 

base, it is manic in general. Also, F(M) is the free nonassociative algebra generated 

by M modulo the identities of a Lie algebra. The free nonassociative algebra is a 

graded algebra whose nth gradation is the sum of as many copies of MC”’ as there are 

associations of n elements, which happens to be & 
( > 

‘,” , but is, in any case, finite. 

The identities are the two sided ideal generated by the homogeneous elements x E x 

and x @ (.v @z) + z @ (x @ v) + y ~3 (z 8 x). Thus F(M) is a graded algebra; when 

M is finitely generated, so is the nth homogeneous component. Let F,(M) denote the 

sum of all the homogeneous components of F(M) up to the nth. Let N be the kernel 

of F(M) -+ U(F(M)e) and N,, = N n F,(M). Then N,, is finitely generated. If N # 0, 

then for some n, N,, # 0 since N is the union of them. Thus N,, is a non-zero finitely 

generated abelian group and it is a standard result that there is some prime p for which 

Z, @ N,, # 0. But Z, is a field and both ()” and U commute with Z, 8 -, so that 

reduces the question to the case of a field for which the Poincare-Witt theorem, which 

gives the explicit form of the free basis, implies that the adjunction arrow is injective. 

This finishes the case of a free module; projectives are readily handled as retracts 

of free modules. 0 

With this, Theorem 4.1 applies and shows that the cotriple resolution is homotopic 

to the one developed in [4]. 

6. Theorems on double complexes 

This section contains the theorem on double complexes that is used to prove the 

main Theorem 4.1. 

Let C’ and C” be differential (or differential graded) modules and suppose 

f’ : C” -+ C’ is a map between them. We begin by defining the suspension SC” to 

be the same module (resp. differential graded module) with the negative of the bound- 

ary operator. In addition, in the graded case, the grading is to be raised by 1. That is, 

(SC”), = C:_r . Let C = C’ @ SC” with boundary operator 

where d’ and d” are the boundary operators in C’ and C”, respectively. In the graded 

case, C,, = CA @ C’:_, . It is easy to see that C is a differential (resp. differential graded) 

module and that we have an exact sequence 

o+c’ic-+sc”-+o. 

It is almost easy to see that the connecting homomorphism H(SC”) + H(C’) is essen- 

tially H(f). In the graded case, E&(f) : H,(C’) ----f H,(C”) = H,_l(SC”) which is the 

way the connecting homomorphism should go. 

C is called the mapping cone of f and is frequently denoted Cf. 
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Proposition 6.1. If C” has trivial homology, then the inclusion C’ C: C is u hontologj 

equivalence. If C” is contractible, then C’ C C has u left inverse that is u hontotop~~ 

inverse. 

Proof. The first is an immediate consequence of the exact triangle of homology. For 

the second, let s” : C” + C” be a contracting homotopy, which means that s” 0 d” + 

d” 0 s” = 1. The inclusion i : C’ -+ C has matrix 
0 

A . Let j : C ---) C’ have matrix 

(1 J’os”). Then 

d’oj=d’(l f os’l)=(d’ d’of OS”)E(d’ fod”O,s”) 

and 

jod=(l f0.q; _g = (d’ ,f’ _jJ’oS”od”) 1 (d’ f Od”O?). 

Thus j is a chain map. In the graded case it is also seen to preserve the grading. It is 

clear that j o i = 1. Let 

We have 

0 0 

0 -_s” o d” 

while 

I-ioj = (A y) - (:)(I f0.s") 

= (A ;) _ (:, .f.“o”“) = (; .‘“1”“>, 

Thus i o j is homotopic to the identity. 0 

It is often useful to recognize when an exact sequence of differential modules is a 

mapping cone sequence. Fortunately, the criterion is easy. 

Proposition 6.2. Let 0 + C’ + C + SC” --+ 0 be a sequeme of d@erentiul (resp. d{fl 

ferentiul graded) modules. This is isomorphic to u mapping cone sequence tf und only 

tf it is split as u sequence of modules (resp. gruded modules). 

Proof. We do this for the ungraded case. The graded case is similar. Since a mapping 

cone sequence is split, the necessity of the condition is clear. So suppose the sequence 
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is split. Then, up to isomorphism, C = C’ @ C” and the inclusion and projection maps 

have matrices A 
0 

and ( 0 1 ), respectively. The boundary operator has a matrix 

From 

we conclude that e’ = d’ and from 

= d” ( 0 1 ) 

we conclude that g = 0 and e” = d”. Then from 

we see that ,f 0 d” + d’ o f = 0 so that f : S-‘C” - C’ is a chain map. 0 

In the following, use is actually made of properties of module categories. The prop- 

erty in question, that homology commutes with direct limits along chains is a conse- 

quence of the fact that in module categories filtered colimits commute with finite limits 

and, therefore, a filtered colimit of monomorphisms is a monomorphism. This is the 

property that Grothendieck later called AB5 is his famous “Tohoku” paper [6]. 

Corollary 6.3. Let 

be u sequence of di&erential (resp. dtrerential graded) modules. Suppose thut C is 

the colimit of the sequence. If each C,, --+ C,,+l is a homolo~gy equivalence, then so is 

each C, ---) C. 

Proof. This is an immediate consequence of the fact that homology commutes with 

filtered colimits. 0 

Theorem 6.4. Let 

CO *c,-+...+cn+... 

be (I sequence of diflerential (resp. dtfherential graded) modules. Suppose thut C is the 

colimit of the sequence. If each C,, 3 C,,, has a left inverse that is also a hornotop.b 

inverse, then the same is true for each C, 4 C. 

Proof. Suppose that f,” : C,,, --+ C, denotes the composite arrow for n 2 m. Let 

.4”m : C,, -+ C,, for n > m be the composite of the left inverses, homotopy inverses 
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that are known to exist. Then gt 0 f,” = 1. For each n, there is a h, : C, 4 C, such 

thatdoh,+h,od=f,“~‘og~_,. 

Lemma 6.5. There is a sequence of waps k, : C, --) C,, such that d Q k,, + k, o d = 

1 - f,” o g; und k, of,“-’ = f,“-’ ok,_,. 

Proof. Let ko = 0. Assuming we have defined k, for m < n, let 

Then we have 

dok,+k,od =doh,-doh,of;-log;-, +dof;-‘ok,-tog:-, 

+h,od-h,of,“-‘og~_,od+f,“-‘ok,-,og~_,”d 

=doh,-doh,oJ’~-‘og~_,+f~-‘odok,-Iog~-, 

+h,od-h,odof~~‘og~_,+f~-‘ok,-Iodog~-, 

= (d o h, + h, 0 d)( 1 - j-;-l 0 g”,-l) 

+f,“-‘o(dok,_, +k,-, od)og;_, 

;:(1-~~-‘og~_~)2+f~-‘.~~-f~_,~Q~-’!~Y”n-, 

= 1 +,“-I og;_, +f,“_’ og;_1 -f,“_’ of,“_, og~-‘)og;-, 

= 1 - f; 0 g;f 

and 

,+f;- =h,of~~L-h,of,n~‘og~_,of~-‘+f~-‘okn-log~-,’f~-l 

- h, of,“-’ -h, of,“-’ + f,“-’ ok,-1 - 

= f;-’ o k,_l 

as required. 0 

By an obvious induction, we have that for m < n, k, 0 f,” = f,” o k,,,. 

We now let f” : C, + C be the standard map to the colimit. Define g,, : C + C, by 

gn 0 f” = 
{ 

f: if m < n, 

gil if m > n, 

andk:C-tCbykof”=f o k,. We must show that these are compatible families. 

The first is a matter of considering cases and is left for an exercise. For the second, 
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wehave,form<n,f”ok,,of~=f”of~ o km = f m o k,,, as required. By definition, 

gn o f” = 1. To calculate d o k + k o d we compose with f”: 

dokofn+kodof” =dof”ok,,+kof”od=f”odok,+f”okod 

= f”o(dok,+li,od)= f”o(1 - f,“og;l) 

=f”-fOog;;=fn-f~Og;lOgnOfn 

=f”-fOogoOfn=(l-fOog&fn. c 

The hypotheses for this theorem may be too strong, but some hypothesis, beyond 

that of each C,, 4 C,+t having a homotopy inverse, is needed. We give an example to 

show this. Note first that any morphism between contractible complexes is a homotopy 

equivalence; the 0 map in the opposite direction is a homotopy inverse. In addition, if 

a map from a contractible complex to another complex is invertible, then the second 

complex is also contractible. Thus it is sufficient to exhibit a sequence of contractible 

objects whose colimit is not contractible. We let C,, + C,+l be the map from the left 

column to the right column of 

0 0 

I I 

I I 
0 0 

The unlabeled vertical maps are simply the inclusion of the kernels and map between 

them is the induced map from one kernel to the other. The colimit of this sequence is 

the complex 

o~~z+~z--t2-‘z+o. 
Nn NI, 

(Here 2-‘2 is the subring of the rationals generated by Z and i; equivalently, it is 

the subgroup of the additive group rationals of all n/2“.) Although each of the C, is 

contractible, the colimit sequence is not. 

One can use this example to show that the limit (as opposed to the colimit) of a 

sequence of acyclic complexes is not acyclic. In fact the limit of the complex formed 

by homming the C, into Z is not acyclic, while each of the constituent complexes is 

in fact contractible. 
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We apply Corollary 6.3 as follows. Consider a double complex C..: 

I I I . . . __) c,__,------w . . . - co,_,- c-,~-,-” 

I 
0 

I I 
0 0 

Let T,,, = T,,,( C..) be the double complex truncated above the mth row. Also let R, 

be the mth row of the complex with the negative of the boundary operator and with 

the grading reduced by 1, so that the degree of the elements of C,, have degree 

n + m - 1 as elements of R,. If d denotes the horizontal and i; denotes the vertical 

boundary operators in the double complex, then the identity d o 8 + d o d = 0 implies 

that d o d = ii o (-d) so that c7 : R, ---f T,,_, is a chain map. Its mapping cone is easily 

seen to be T,,, and the mapping cone sequence is 

O+T,,_,+T,,,+R,-+O. 

We then conclude. 

Theorem 6.6. Let C.. be a double complex us above. Suppose that every rot18 R,, 

m > 0 is acyclic (resp. contractible). Then the inclusion of R-1 + C.. is a homology 

(resp. homotopy) equivalence. 

Corollary 6.7. Let C.. he a double complex as above. Suppose that every row except 

the bottom and every colunm except the right are ucyclic (resp. contractible). Then 

the bottom row and the rightmost column are homologous (resp. homotopic). 

Appendix. Beck modules 

Although Beck’s definition of module that we use here is widely known among cat- 

egory theorists, it does appear to have ever been published. In response to a suggestion 

of the referee, I give a brief exposition of the essential details. 
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The definition itself is simple. As mentioned in 2.1, if A is an object of the category 

.d, an A-module is an abelian group object of the slice category d/A. What we want 

to indicate here is how, for familiar categories, associative algebras, commutative asso- 

ciative algebras, Lie algebras and groups, this definition reduces to two sided modules 

in the first case and left modules in the other three. We give many of the details in the 

first case and leave them to the reader for the other three, aside from a brief discussion 

of why you get just left modules. 

A.l. Beck modules over an associative algebra. We fix a commutative ring K. All 

algebras will be assumed to be unital K-algebras, all modules will be assumed to 

be over K and all maps K-linear, without further mention. Let A be an algebra and 

suppose that B +A is an abelian group object in the category d/A, where .d is the 

category of associative algebras. What we are aiming to show is that, as a K-module, 

B E A x M, and that the multiplication is given by 

(a,m)(a',m') = (aa',am'+ ma') 

for a well determined two sided A-module M. We will also show that for any other 

C -+ A in d/A, the abelian group of homomorphisms .d/A( C 4 A, B + A) is just the 

group of derivations Der( C, M). 

In order to have a group structure, there has to be first a zero map z : A + B which, 

to be a map over A, splits B-+A. Thus, as K-modules at least, B " A x M, where 

A4 = ker(B + A). We may suppose that B = A x M and the map to A are projections 

on the first coordinate. Since that projection is a ring homomorphism, it follows that 

the product is given by a formula of the form 

(a,m)(a'.m')= (aa',t(a,m,a',m')), 

where t is some function. The distributive law implies that 

t(a,m,a',m') = t(a.O,a',O)+ t(a,O,O,m') + t(O,m,a',O)+ t(O,m,O,m'). 

Since z is an algebra homomorphism, it follows from z(aa') = z(a)z(a') that (a,O) 

(a/,0) = (aa',O) so that t(a,O,a',O) = 0. If we write t(a,O,O,m') = am', t(O,m,a',O) = 

ma' and t(O,m, 0,m') = mm', the multiplication formula now reads (a, m)(a',m') = 

(au', am' + ma' + mm'). It is an elementary calculation using associativity of multipli- 

cation to see that this right and left action of A on A4 makes the latter into a two sided 

A-module. 

So far, we have used only the zero map. An abelian group object needs an “addi- 

tion” in the form of an algebra homomorphism we denote * : B x,4 B + B. Elements 

of B xA B can be represented either as pairs of pairs ((a,m),(a', m')) or simply as 

3-tuples (a,m,m'). We will denote (a,ml)*(a,m2) by (a,ml,m2)*. Since * is a map 

over A, it follows that it must have the form (a, ml, m?)* = (a,s(a. ml, m2)). The fact 

that * is additive implies that s has the form s(a, ml, m2) = so(a)+sl (ml )+sz(mz ). Since 

z is the zero map, it follows that for any a E A, (a,m)*(a,O)=(a,O)*(a,m)= (a,m) 
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from which we see that so(a) = 0 and si(m) = s?(m) = m. Thus (a,ml,m2)* = (a,ml+ 

ml). The fact that * preserves multiplication implies that (( 1, ml, 0)( 1, 0, rn2 ))* = 

(l,mi,O)*(l,O,m2)* which gives (l,ml+ml) = (l,ml+m2+mlmz) so that rnlrn2 = 0. 

This verifies the claim about the multiplication in B. 

Now let f : C +A be an object of the slice category. A map g : C---f B = A x M 

over A must have first coordinate f and second coordinate a map we call d : C +M. 

From the fact that g is additive, it follows that d is and the fact that d is multiplicative 

implies that 

(g(cc’),d(cc’)) = (gc gc’, gc . dc’ + dc . gc’) 

which means that d(cc’) = gc . dc’ + dc . gc’, which is the definition of a derivation of 

C-+A into an A-module (with the induced action of C on A). 

A.2. Beck modules in other categories. The arguments in other categories are quite 

similar. It may come as some surprise that you get just left modules (alternately, right 

modules) over groups, but that is what happens. If M is the kernel of the map n -+ 7t 

that has the structure of an abelian group object in the category of groups over rr, then 

n acts on M by xm = z(x)mz(x)-’ where z is the zero section as before. This element 

(and not z(x)m as in the case of associative algebras) is in the kernel of II -+ rc and 

that is where the structure comes from. In the case of commutative rings, you would 

appear to get two sided modules, but the fact that the larger ring is commutative forces 

the operations on the two sides to coincide. Similar things happen in the case of Lie 

algebras, where they differ by a sign. 
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